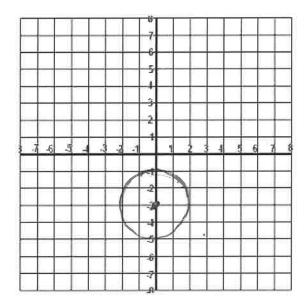
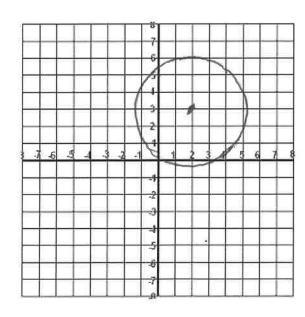

Introduction to Circles

Find a relationship between the x and y coordinate of any point that lies on the circle that is centered at the point (h, k) and has a radius of r.


A circle whose center is the point (h, k) with a radius of r has the equation:

$$(x-h)^2 + (y-k)^2 = r^2$$

This is called the standard equation of a circle

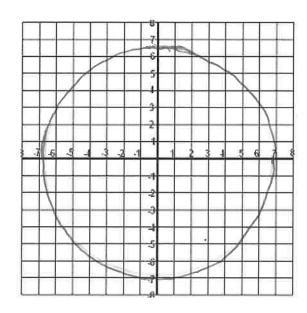

Determine the center and the radius of the circles below and then draw the graph of the equation:

$$x^2 + (y+3)^2 = 4$$

center 15 (0,-3)

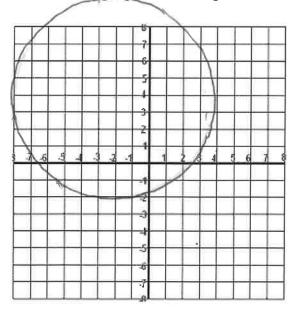
$$(x-2)^2 + (y-3)^2 = 10$$

center is (2,3)
radius 15 VIO


Determine the equation of the circle, in standard form that is centered at the point (1, -3) and has a radius of 5.

$$(x-1)^2 + (y+3)^2 = 25$$

Determine the standard form of the equation of the circle that has diameters at (3, -1) and (-1, -7).


center is
$$(1, -4)$$
, the midpoint radius = $\sqrt{(3-1)^2 + (-1+4)^2}$
= $\sqrt{4+9} = \sqrt{13}$
 $(x-1)^2 + (y+4)^2 = 13$

Sketch the graph of the equation $5x^2 + 5y^2 = 240$

 $x^{2} + y^{2} = 48$ center is (0,0) radius is $\sqrt{48}$

Sketch the graph of the equation $x^2 + y^2 + 4x - 8y - 16 = 0$

 $x^{2} + 4x + y^{2} - 8y = 16$ $x^{2} + 4x + 4 + y^{2} - 8y + 16 = 16 + 4 + 16$ $(x + 2)^{2} + (y - 4)^{2} = 36$ center is (-2, 4)radius is 6